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An analytic expression for the effective emissivity of an SVTI packet is derived 
with the help of the quasi-diffusion approximation [I] under the assumption that 
the reflection at the screens is diffusely specular. 

The development and extensive use of screen-vacuum thermal insulation (SVTI) has sig- 
nificantly stimulated progress in cryogenic technology. Even now, however, there are unutil- 
ized reserves in this area. It is well known that the effective thermal conductivity of SVTI 
achieved in calorimetric setups is 3-5 times lower than the value that can be obtained for 
real cryogenic equipment. One of the main reasons for the degradation of the quality of SVTI 
in the parts is the presence of technological gaps between the packets or between a packet 
and thermal bridges. The significant change in the efficiency of SVTI is also linked with 
the existence of heat transfer between the end of its packet and the drainage necks or other 
constructional elements. To describe all these problems it is necessary to have data on the 
emissivity of the endface of the SVTI packet, which cannot yet be determined experimentally. 
In this paper we propose a method for calculating this parameter. 

In practice the endface of an SVTI packet consists of a collecOion of separate gaps 
between SVTI screens, whose length s is much greater than the width h, i.e., the distance 
between the screens. A method for calculating numerically the emissivity of not very long 
gaps, containing diffusely reflecting walls, was developed by Sperrou [2]. In [2] the emis- 
sivities of flat channels with the emissivity of the walls E ~ 0.5 were evaluated, while in 
[3] they were evaluated for 0.01 < ~ ! 0.5, i.e., for SVTI packets. For sufficiently long 
channels the numerical solution of this problem presents significant difficulties. There are 
also no estimates of the effect of the specularity of the reflecting surfaces on the param- 
eter under study, which to one extent or another happens in real materials. 

The purpose of this work is to derive analytic relations for calculating the effective 
emissivity of an SVTI packet. On the basis of the problem formulated the packet can be re- 
garded as a collection of separate flat channels, making the assumption that the temperature 
remains constant along each channel. In SVTI the temperature of neighboring screens is vir- 
tually identical. For this reason, the temperatures T and the emissivities of both walls 
of the channel are assumed to be the same and constant along the coordinate x. To simplify 
the problem and without losing generality we shall model the medium outside the SVTI packet 
by an absolutely black body whose temperature equals zero. 

Consider a gap between parallel flat strips S I and S 2 of width s Each strip is bounded 
in its plane by the straight lines x = 0 and x = s The emissivity of the gap is defined 
as the ratio of the heat-flux density Qinc, incident from the side of the gap on its endface 
AD (Fig. i), to the radiation of an absolutely black body: 

Fig. i. Transverse section of a flat gap. 
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Qinc 8a-- ~ (1)  

We shall first study the case when the radiation flux is reflected in a specularly dif- 
fuse manner by the walls of the gap. In this case we shall confine our analysis to values 
of ~/h that are so large that the effect of the gap at the end BD (Fig. i) on the emissivity 
can be neglected. The diffuse part of the effective flux at the point y equals 

(y) = ezT a -t- qa (y). 

Then the effective flux at the point y in the direction s is expressed in terms of the dif- 
fuse component of the effective flux: 

q(y, s ) =  1__ ~ (1 --a)k(1 --e)k$(yk+t), (2)  
h=O 

where yk+1 is a point obtained as a result of k specular reflections from the point y in 
the direction si=s--2ny (nv, s). The function q(x) according to [i], satisfies the following 
integral equation: 

~ ( x ) = e ~ T a + a (  1 e ) [ h 2  ~ ~kke ( q(x')dx' +F]  (3)  
! 2~ ~ o  ~ [h~k~ + ( . -  ~')~I ~/= ' 

where u = (i - e)(l - ~) and F is the radiation flux from the ends AD and BC arriving at the 
point x. The radiation flux incident on the lateral surface, averaged over the height of 
the gap, as shown in [i], has the following form: 

o= ~,~ ~ 
Oinc = X ~ ,f x$ (x)[(kah 2 + xZ) "*/2 --((k + 1)~h 2 + x2) -'/2] d.. (h) 

h=0 0 

Using the quasidiffusion approximation [i] we shall replace the integral equation (3) for 
the function q(x) by a differential equation 

d~ i • = _ x2 (1 - -  ~) ~T~, ( 5 )  

where 

•  e ( 1 - - a )  . p =  I ~kk2 I 
(1--~t) ah2P ' 2~ X l n - -  

h = l  kh 

Let ~/h >> i. Since the function q(x) must be bounded at x = ~ the solution of Eq. (5) can 
be represented in the form 

$ (x) = (1 - -  9) ~T ~ + c exp (--  • ( 6 ) 

We shall obtain the boundary condition for determining the coefficient c from the integral 
equation (3), written at the end x = 0: 

1 (x') 
2~ ~==o ! [hZkZ + x"]a/2 " 

We expand the function q(x') in the integrand in a Taylor series around the point x = 0. 
Then up to terms of order O(h2/~ 2) we can write 

.- = e o - y  ~, 

2~ k=o ~k z + 1 

whence follows the boundary condition for Eq. (5) 

$ (0) -~ ~oo'T ~, 

where 

(7) 

(8) 
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Fig. 2. Effective emissivity of the endface of the gap ver- 
sus the relative length of the gap for different emissivities 
of the walls in the case of purely specular reflection at the 
walls. The solid lines show the data of [2] and the broken 
lines show the calculation based on the formula (ii): i) 

= 0.i; 2) 0.3; 3) 0.5. 

Fig. 3. Effective emissivity of the endface of the gap ver- 
sus the relative length of the gap in the case of diffusely 
reflecting walls for different emissivity of the walls. The 
solid lines show the data of [2] (curves 5-7) and [3] (curves 
1-4); the broken lines show the calculation based on the for- 
mula (12): i) E = 0.01; 2) 0.03; 3) 0.05; 4) 0.i; 5) 0.5; 
6) 0 .7 ;  7) 0 .9 .  

The solution of Eq. (5), satisfying the condition (8) and bounded at infinity, has the form 

$ (x) 1 - -  l~ + (1% - -  1 + Ix) exp (--  ux). (9) ~rT * 

Substituting this expression into (4) and (i) we obtain the following value of the effective 
emissivity of the endface of the gap: 

~. ~k i!x[1 , ((k + 1)~h2-l- x~)-'/2lax. (lo) c a =  ~ --~x +(~xo--  l v - ~ ) e x p ( - -  • + x~) -1/2 --- 
h=O b 

In the case of purely specular reflection a = 0 and, therefore, q = EoT". Then 

ea = Ix k e xZ)_l/2 7 - . I  x [(k~h2 + - -  ((~ + ])~h~ + x2)-'/~] ~ = 
k = O  0 

(11) 
oo 

-~ l - - sh~=  I ~ ' [ V ( k - I - ' l ) Z + (  ~ / - - - ) 2 - - V k U + ( h / - - - ) 2  j.  

[2]. 
Fig. 2 converge toward one another as ~/h increases. 

We shall now examine purely diffuse reflection, i.e., p = 0. 
ble to take into account the arrival of radiation from the closed end BC: 

1 qr (x') 1 dx' + - -  

ea = --~ ~ oT ~ -V hz + x '~ (IT ~ h 

Here we take for Q the average flux at the endface of the gap BC: 

J Q = ~oT~ + ( 1 .  ~) -~- o 

For h << ~, qr(x) satisfies the differential equation 

Figure 2 compares the values of ca, obtained from the formula (ii) and the results of 
In the limit E/h + ~ the effect of the closed end approaches zero and the curves in 

In this case it is possi- 

(12) 

(13) 

422 



d2qr x2q r (X) ---- -- u~oT ~, ( 14 ) 
dx z 

where K 2 = 2e/(l - s)h 2 in (l/h) The general solution of Eq. (14) has the form 
i 

qr (x) - -  ~T  ~ (1 q- r eXp ( - -  ~IX) ~- O 2 exp (• ( 15 ) 

The b o u n d a r y  c o n d i t i o n s  f o r  d e t e r m i n i n g  t h e  c o e f f i c i e n t  c 1 and c 2 can  be found  f rom t h e  i n -  
t e g r a l  equation satisfied by the effective radiation flux density: 

qr (X) = e(YT ~ "-~ (1 - -  e) i [h z ~- (x --x')213~- -b - ~ -  
0 

We w r i t e  t h e  b o u n d a r y  c o n d i t i o n s  f o r  Eq. ( 1 4 ) :  

qr (0) = ~ T ~  + (1 -- 8) o (h2 + x'~) 3/2 + T 

l - - x  ) ]  (16) 
V'h~ + (l - -  x) 2 " 

l "h  z -k I z , 

(17) 

qr (I) = ~T~ + (1 - -  ~) (x') dx" Q 
0 [h 2 + ( l - -  x')21 ~/2 + ~ -  " 

S u b s t i t u t i n g  t h e  e x p r e s s i o n  (15)  f o r  q r ( x )  i n t o  (13)  and (17)  we o b t a i n  a s y s t e m  o f  two a l g e -  
b r a i c  e q u a t i o n s  f o r  c 1 and c 2. Hav ing  d e t e r m i n e d  q r ( x )  we f i n d  Ea u s i n g  t h e  f o r m u l a  ( 1 2 ) .  

The following estimate is valid for the absolute error in replacing the integral equa- 
tion by a differential equation: 

6 q r = o l l ~ - - - - J e ( + ) 2 1 n + )  a s  h - + 0 .  (18) 

The r e l a t i o n s h i p  (18)  p e r m i t s  d r awi ng  t h e  f o l l o w i n g  c o n c l u s i o n s :  t h e  s m a l l e r  e ,  t h e  l a r g e r  
t h e  v a l u e  o f  ~ /h  mus t  be  in  o r d e r  t o  a c h i e v e  a g i v e n  a c c u r a c y .  I n  a p p l i c a t i o n  t o  vacuum i n -  
s u l a t i o n ,  where  0 .01  5 E ~ 0 . 1 ,  in  o r d e r  t o  a c h i e v e  an a c c u r a c y  o f  -5% t h e  s i m p l i f i e d  e s -  
t i m a t e  h / ~  = r  can  be e m p l o y e d .  

Figure 3 compares the values of ~a obtained in the case of diffuse reflection with the 
data of [2, 3]. As one can see from the figure, for s > 0.5 good agreement with the results 
in [2] is already achieved for ~/h ~ 6. The values of ga for e < 0.I with ~/h 5 20 are pre- 
sented for [3]. Because of this the results based on the formula (12) differ from the data 
of [3], but as ~/h increases the curves converge towards one another. The estimate (18) 
shows that the required accuracy will be achieved with ~/h ~ i00. 

NOTATION 

h, distance between the screens of the gap; ~, length of a screen; Q, average flux at 
the endface of the gap; q(x), qr(x), effective radiation fluxes on the screen at the point 
with the coordinate x in the case of diffusely specular and diffuse reflection, respectively; 
qd(y), part of the flux reflected diffusely from the wall at the point y; q(y), diffuse part 
of the effective flux; 6q r, absolute error in determining the effective flux when the inte- 
gral equation is replaced by a differential equation; T, temperature of the gap walls, a, 
degree of diffuseness of the reflection qd(y) = aqinC(y); e, emissivity of the gap walls; 
~, effective emissivity of the endface of the gap; and o, Stefan-Boltzmann constant. 
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